
Increasing Efficiency for Hit Detection in BLASTN

Asian Journal of Science and Applied Technology (AJSAT)
Vol.2.No.1 2014pp 43-48

available at: www.goniv.com
Paper Received :05-03-2014
Paper Published:28-03-2014

Paper Reviewed by: 1. John Arhter 2. Hendry Goyal
Editor : Prof. P.Muthukumar

goniv Publications Page 43

INCREASING EFFICIENCY FOR HIT DETECTION IN BLASTN

1Gomathi.V , 2A.D. Khamala khannen
Electronics and Communication Engineering,

Smk Fomra Institute Of Technology,
Chennai.

gomathi.rajen@gmail.com

ABSTRACT

 For biologists very hard time is with analyzing the uniqueness between two sample sequences such as
DNA, RNA and protein sequences. A Bio-sequence represents a single, continuous molecule of nucleic acid or
protein. It can be anything from a band on a gel to a complete chromosome. That’s to design for a huge database
system which finds similarities between two sequences that have biological significance. In such condition we have
to compromise in computation time, this can be overcome through implementation BLASTN process. In this paper
the BLAST process will be working more efficient by a new approach for biological sequence database scanning.
The scanning is performed with reconfigurable FPGA base hardware by comparing sequence one to many sequences
from the database. The experimental sequence matching reduces the computation time of BLAST. [1] [2]

Keywords: biological sequence, significance comparing, word-matching, computation time.

1. INTRODUCTION
 Database searching is quite big process in
many of the application. Searching in a database for a
real time system is real tough work to be performed.
That to scanning genomic sequence database is a
common and often repeated task in molecular biology.
The searching should be performed faster because new
sequence will be updated very quickly, so the data will
be increasing in the database in exponential manner. At
this case we are in need of a algorithm which performs
very efficiently with the database for accessing the data
i.e. biological sequence. One of the most widely and
efficient search algorithm tool is BLASTN (Basic Local
Alignment Search Tool-Nucleotide). Process of
BLAST: Using a heuristic method, BLAST finds similar
sequences, not by comparing either sequence in its
entirety, but rather by locating short matches between
the two sequences as shown in fig. 1.

 This process of finding initial words is called

seeding. It is after this first match that BLAST begins to
make local alignments. While attempting to find
similarity in sequences, sets of common letters, known
as words, are very important. For example, suppose that
the sequence contains the following stretch of letters,

AGCTGC. If a BLASTN was being conducted under
default conditions, the word size would be 3 letters. In
this case, using the given stretch of letters, the
searched words would be AGC, GCT, CTG, and
TGC. The heuristic algorithm of BLAST locates all
common three-letter words between the sequence of
interest and the hit sequence, or sequences, from the
database. These results will then be used to build an
alignment. After making words for the sequence of
interest, neighborhood words are also assembled.
These words must satisfy a requirement of having a
score of at least the threshold T, when compared by
using a scoring matrix. One commonly-used scoring
matrix for BLASTN searches is BLOSUM62,
although the optimal scoring matrix depends on
sequence similarity. Once both words and
neighborhood words are assembled and compiled,
they are compared to the sequences in the database in
order to find matches. The threshold
score T determines, whether a particular word will be
included in the alignment or not. Once seeding has
been conducted, the alignment, which is only 3
residues long, is extended in both directions by the
algorithm used by BLAST. Each extension impacts
the score of the alignment by either increasing or

http://www.goniv.com/
mailto:gomathi.rajen@gmail.com
http://en.wikipedia.org/wiki/BLOSUM62

Increasing Efficiency for Hit Detection in BLASTN

goniv Publications Page 44

decreasing it. Should this score be higher than a pre-
determined T, the alignment will be included in the
results given by BLAST. However, should this score be
lower than this pre-determined T, the alignment will
cease to extend, preventing areas of poor alignment to
be included in the BLAST results. Note, that increasing
the T score limits the amount of space available to
search, decreasing the number of neighborhood words,
while at the same time speeding up the process of
BLAST.

Fig.1.Diagramatic representation of BLASTN

2. ALGORITHM
 The paper deals with nucleotide molecular
mostly, so more specific BLAST algorithm is required.
BLASTN is an algorithm which deals only with
nucleotide. This work can also be implemented in the
DRC coprocessor system [1] [2]
A. Word matching accelerator architecture
Mainly BLASTN is used to find word matches. A word
match is performed by fixing or assuming a string which
has fixed length (w) w-referred to as “w-mer, that
occurs both in query sequence and database sequence.
Word matching flow diagram is as follows:
Stage1: Implementation of parallel bloom filter.
Stage 2: False positive eliminator.
Stage3: Redundancy eliminator.
1) Stage 1: Implementation of parallel bloom filter
The word-matching stage aims to find good alignments
containing short exact matches between a query
sequence. Such matches such as hash tables or suffix
trees. An alternative solution to this filtration problem is
to use a Bloom filter. A Bloom filter is defined by a bit-
vector of length m, denoted as BF[1,…,m]. A family of
k hash functions hi: SA, 1< i < k, is associated to the
Bloom filter, where S is the key space and A={1,…,m}
is the address space. A Bloom filter is a simple space-
efficient randomized hashing data structure suitable for
quick membership tests on FPGA implementation. A
Bloom filter works in two steps. [1] [2]
1).Programming: For a given set I of keys, I={x1,….,Xn},
I c S, the Bloom filter’s programming process is
described as follows. First of all, initialize the bit vector

m with zeros, then, for each key xj E I, compute its k
hash values hi(xj) , I< i < k, subsequently, set the bit
vector to one according to the k hash values.

2).Querying: the querying process of the
Bloom filter works the same as its programming
process. For given key x, compute k hash values hi(x),
I< I < k, is zero, then x E I, otherwise, x is said to be a
member of set I with a certain probability. The
conventional design for the identification of w-mers
using a bloom filter is shown in Fig. 2.

Fig.2.Conventional design for identifying w-mers
in a sequence database stream using bloom filter

 The bloom filter has been programmed by
parsing the query sequence into overlapping
substrings of length w in the preprocessing step.Here
is an example for the query sub strings. Assume w=3
and the query sequence is “cttgtata” then ,the parsed
sub strings are {“ ctt”,”ttg”,”tgt”,”gta”,
”tat”,”ata”}.Although the conventional bloom filter
architecture is efficient for membership test, its direct
implementation is not suitable for high performance
design on an FPGA.

The computation efficiency will be compromised,
if a single key was sent to all hash functions for
membership testing, especially under low match rate
conditions. Thus, our idea is to divide the k hash
functions into different groups, with each group
used for a different hash query. We apply three
techniques to improve the throughput compared to
the conventional Bloom filter architecture as shown
in Fig 3.1 ,3.2.

Increasing Efficiency for Hit Detection in BLASTN

goniv Publications Page 45

 1) Partitioning: We first partition the Bloom filter
vector into a number of smaller vectors, which are then
queried by independent hash functions.

2) Pipelining: We further increase the throughput
of our design using a new pipelining technique.

3) Local stalling: We use a local stalling
mechanism to guarantee all w-mers are tested by the
Bloom filter.

 In each clock cycle, it can support k/ P different
hash queries. The hash functions used in the PPBF block
are chosen from which it can be efficiently implemented
in hardware. Suppose the input bit string X with b
bits is represented as X = < x1, x2 , …, xb >. We
calculate the
 i -th hash function over X , hi (X) as
hi (X) = (di 1 · x1) ⊕ (di 2 · x2) ⊕ · · · ⊕ (dib · xb)

where “·” is a bitwise AND operator and ⊕ is a
bitwise XOR operator, di are predetermined random
numbers in the range [0, …, m − 1]. Both the AND
a n d XOR operations can be implemented in
parallel to shorte

n computation.

Fig.3.1, 3.2 Architecture of Multiple Hits Detection

Module.
Parallel Architecture Design of BLAST Algorithm
with Multiple Hits Detection.

2) Multiple Hits Detection: Module-Multiple Hits
Detection Module is used to detect 3-word hits and
record the hits address in the query and the subject
sequence. Compared to WPRBS method which could
detect at most one hit in only one clock cycle, this
design can detect multiple hits in only one clock
cycle. The architecture of Multiple Hits Detection
Module is shown in figure 3.1,3.2 As the figure
illustrated, there is a systolic array with 32 processing
units, every 3 units are connected to one 3-input AND
gates. Every 16 gates outputs are connected to a 16 bit
register. The value of each register is sent to the
corresponding hits information extraction units for
recording the hits address in the query and the subject
sequence. The systolic array and the hits information
extraction unit are driven by two different clocks. At
each clock out rising edge, query or subject sequence
moves forward for one processing unit.
 The whole architecture works as follows:
first, a query sequence with 32 characters is forwarded
into the systolic array so that each processing unit
holds a character from the query sequence. Then the
subject is driven into the systolic array by each
internal clock rising edge. Mean while ,the incoming
subject character and the query character which are
held by the unit are compared, if they are identity, the
logic “1” would be generated; otherwise, the logic “0”
would be generated. The comparison result is an input
of a 3-input AND gate. A hit is detected when logic
“1” is generated from its output. So, the systolic array
with 3-input AND gates can detect multiple hits at one

Increasing Efficiency for Hit Detection in BLASTN

goniv Publications Page 46

internal clock rising edge. Architecture of the
processing unit in the systolic array is illustrated in
Figure.5. As shown in figure 3.1, 3.2, outputs of 32 3-
input AND gate goes into 2 16-bit registers. The Hits
information extraction unit detects hits location and
records them. The multiple hits detection module is a
parallel, pipelined architecture. The systolic array with
32 processing units cooperates with 32 3-input AND
gates to detect hits in both sequences. Hits information
extraction block records those hits location.

3) Hits Combination Block: If there is a high similarity
between query and subject sequence, the multiple hits
detection module may output a large amount of hits per
clock cycle. For instance, two adjacent hits “ATK” and
“TKP” are found but they are actually one hit” ATKP”.
If they are not combined into one hit, they would have
been recorded twice .Hence this block can detect
overlapping hits and merge them to reduce verbose hits
and maintain the sensitivity of BLAST.

 Fig.4.Hits Combination Block

 This block contains a Hits (First In First
Out)FIFO buffer which is used to store hits location
address from both query and subject sequence. The data
flow in this block is shown in Fig. 4.

Fig.5.Architecture of processing unit of multiple hits

detection module
4) Stage 2: False positive elimination.

The objective of this stage is to find all false positive
matches generated by bloom filter and get the

corresponding position information in the query
sequence for the true positive words. The second sub
stage of our word-matching accelerator design is
false-positive elimination, which includes two
objectives:

1) Find all false-positive matches generated by
the Bloom filter;

2) Get the corresponding position information in
the query sequence for true-positive w-mers.

One solution for this sub stage is to use a hash
lookup table. The position information of each w-
mer from the query sequence is stored in the hash
table. A hash table with
1 million entries storing position information for a
100-kbase query sequence requires at least 17
Mbits of memory space (17 bits are needed to
represent 100 k positions). It is clear that the memory
required is significantly greater than that provided by
the on-chip BRAMs. Thus, we store the hash table in
an external SDRAM attached to the FPGA.
Hash collisions and duplicate keys are two common
prob- lems for simple hashing strategies. The former
will hash two different queries to the same location,
while the latter may miss additional position
information. Both of them require extra access to
the off-chip DRAM to get the correct data, which
could introduce potential performance bottlenecks. In
previously reported designs, [1] [2]

 a perfect hash function has been applied to
construct the hash table. A perfect hash function for
a set of n keys maps each key to a distinct table

Fig. 6.Hash Table

entry with no collisions among the keys in the set is
shown in figure 6. However, a perfect function is not
easy to generate, especially when n is large. In
addition, the representation of the perfect hash
function usually needs a significant amount of FPGA
resource and may compete with the Bloom filter
design. The Mercury BLASTN design implements the

Increasing Efficiency for Hit Detection in BLASTN

goniv Publications Page 47

hash table using a near- perfect hashing strategy, which
bypasses the constraint for a perfect hash function.
However, considerable effort is still required to get the
“near-perfect” hash functions. Cuckoo hashing is
another effective hash strategy used to avoid hash
collision, where two independent hash functions
are used for a single hash query. However, the
additional hash table access may reduce the overall
performance and, in rare cases, hash collision can still
appear. In our design, we try a less complicated
approach with few hash collisions, called a bucket hash.
Our idea works as follows. Although it is difficult to
find a perfect hash for all n keys, it might be easier to
find a perfect hash function for a subset of keys, if the
size of the subset is small enough. Bucket hashing
works as follows. [1] [2]
1) Sort the query w-mers into different buckets
according to their prefix (if the prefix length is
properly chosen, the number of w-mers in a given
bucket is relatively small).

2) Find a simple hash function that is collision-free
for all w-mers in the same bucket. If it is not
possible to find such a perfect hash function, uses the
hash function with the minimum hash collisions.
3) Construct a quick lookup table (QLT) which
stores the “collision-free” hash functions for each
bucket.

.5) Stage 3: Redundancy eliminator: To avoid repeated
generation of the same sequence alignment, we go for
this stage. By doing such procedure we can able to
reduce the words. We only eliminate “true overlapping”
words to the registers unit. If two sequences suggest
same alignment matches then one of those matches can
be taken the concept of overlapping.

3. PERFORMANCE
 Once the word matching stage gets completed
then by using verilog language and DRC co processor
[1] [2] (i.e. a process supports to the main processor of
the system) the implementation has been performed.
The main processor will be Xilinx Virtex-5 FPGA chip.
The DRC has been considered has a co-processor
because it stores large volume of off-chip data using the
DRC system’s memory which consists of up to 8 GB of
DDR2 SDRAM with a maximum bandwidth 3.2 GB/s
and 512 MB of low latency RAM with a maximum
bandwidth of 1.4 GB/s. In each clock cycle, the parallel
Bloom filter can receive up to 16 new w- mers to do
the membership examination from local buffers.

4. ANALYSIS
Our design reports more 15-mer hits compared to

the NCBI BLASTN. In our word-matching
accelerator, the Bloom filter only introduces false
–positive results with no false negatives, which
guarantees no sensitivity loss for the true matches.
The off-chip hash table structure, which covers all
situations (duplicate hits and collision hits can be
examined by looking up the secondary table and
the duplicate table, correspondingly), eliminates
all the false positives from the Bloom filter stage.
Thus, our FPGA design can report all 15-mer hits
between the query sequence and the database
sequence. In fact, the NCBI software is designed to
report fewer hits. It applies several optimizations
to accelerate the word-matching search process.
For example, for a 100 Kbase query, the software
first scans the database sequence for 10-mer
matches with step length two, then ,extends one
extra base in both sides to get a 15-mer match with
the search terminating once a match is found, if a
long k-mer (k>15) match exists,15-mer hit losses
will appear. The lost hits are expected to be re-
examined by the ungapped extension stage which
extends hits base by base in both directions.
However, sensitivity loss might appear due to
optimizations applied in the word-matching stage
of NCBI BLASTN software program. For
example, for the 100 kbase query sequence, the
hits from our FPGA design can generate 1270
HSPS, while the hits from NCBI stage can
generate 1212 HSPS.
5. RESULT

Fig.8.simulation result

 The input sequence is a 15 genetic code
represented in hexadecimal format. 1 genetic code is
represented by 24 bits .The query sequence is yet
another 15 genetic code represented in hexadecimal
format from the database .Both the sequences are
compared, if hit is found between any two sequences
output will be 1 else in a case of mismatch output
will be 0.Hence output is a 15 bit code which

Increasing Efficiency for Hit Detection in BLASTN

goniv Publications Page 48

represents the hit between the sequences. The time
consumption for comparing 15 genetic code is 300 ns.
Refer Fig.8.

6. CONCLUSION
 In this paper, I have dealt about increasing the
computation time for finding hit detection in BLASTN
using three sub stages, a parallel bloom filter, an off-
chip hash table, and a match redundancy eliminator.
Finding hits is the most computationally time-
consuming step in BLASTN. The performance is faster
than other approach used in other architectures. The
comparison of my technique with that of NCBI
BLASTN shows a better performance with limited
resource utilization

REFERENCES
 [1] .Reconfigurable accelerator for the word-matching

stage of blastn-yupeng chen,bertil schmidt,senior
member,ieee, and douglas l.maskell,senior
member,ieee-1063-8210/31.00-2012 ieee.

 [2]. A systolic array-based fpga parallel architecture for

the blast algorithm-xinyu guo,hong wang,and vijay
devabhaktuni-international scholarly research
network-isrn bioinformatics-volume 2012,article id
195658,11 pages doi:10.5402/2012/195658.

[3]genbank statistics at ncbi [online]. Available:

http://www.ncbi.
Nlm.nih.gov/genbank/genbankstats.html

[4] s. F. Altschul, w. Gish, w. Miller, e. W.

Myers, and d. J. Lipman, “basic local alignment
search tool,” j. Molecular biol., vol. 215, pp.
403–410, feb. 1990.

[5] blast algorithm [online]. Available:
http://en.wikipedia.org/wiki/ blast

[6] p. Karishnamurthy, j. Buhler, r. Chamberlain, m.

Franklin, k. Gyang, a. Jacob, and j. Lancaster,
“biosequence similarity search on the mercury
system,” j. Vlsi signal process. Syst., vol. 49, no.
1, pp. 101– 121, 2007.

[7] z. Zhang, s. Schwartz, l. Wanger, and w. Miller,

“a greedy algorithm for aligning dna sequences,”
j. Comput. Biol., vol. 7, nos. 1–2, pp. 203–214,
2000.

[8] w. J. Kent, “blat–the blast-like alignment tool,”
genome res., vol. 12, pp. 656–664, mar. 2002.
.

http://www.ncbi/
http://en.wikipedia.org/wiki/

